

PUC

Monografias em Ciência da Computação

The JAT framework:
A Test Automation framework for

Multi-agent Systems

Roberta Coelho

Elder Cirilo

Uirá Kulesza

Arndt von Staa

Awais Rashid

Carlos Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. ___/____ ISSN:______________
Editor: Prof. Carlos José Pereira de Lucena April,2007(under development)

The JAT framework: A Test Automation framework for
Multi-agent Systems *

Abstract. Testing is a critical activity of software development. Software tests tell de-
velopers that the application's pieces are working as designed, and give them confi-
dence that a software maintenance does not break system existing functionalities. Con-
cerning multi agent systems (MASs) very few works have been undertaken in order to
provide developers with valuable testing tools. In this work we propose a testing tool
which allows the MAS developer to define automatic tests. In this article, we present a
unit testing approach for MASs based on the use of Mock Agents. Each Mock Agent is
responsible for testing a single role of an agent under successful and exceptional sce-
narios. Aspect-oriented techniques are used, in our testing approach, to monitor and
control the execution of asynchronous test cases. We present an implementation of our
approach on top of JADE platform, and show how we extended JUnit test framework
in order to execute JADE test cases.

Keywords: Mock Objects, Unit Testing, Dependability, Aspect Oriented Programming.

* This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da Repúbli-
ca Federativa do Brasil.

 ii

In charge for publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

 Table of Contents

1 Introduction 1

2 Background 2

2.1 Aspect Oriented Software Development 2

2.2 Current Approaches for Testing MAS 2

3 Levels of Testing 4

3.1 Object Oriented Testing x Agent Oriented Testing 4

4 Overview of the Approach 6

4.1 Overcoming Obstacles to Testability 8

4.2 Test Scenarios Design 8

5 JAT Design and Implementation 9

JADEMockAgent 9

5.1 Mock Agents Library 12

5.2 Generating the Mock Agents Code 13

5.3 JAT-Based Testing Approach Workflow 13

6 Case Studies 14

6.1 Book trading System 14

6.2 The Expert Committee System 17

6.3 Results 21

7 Evaluation 22

7.1 The Fault Injector 22

7.2 Results 24

8 Lessons Learned 24

9 Conclusions and Future Work 25

10 References 26

 1

1 Introduction

Agent technology has emerged as a prominent technique to address the design and
implementation of complex distributed systems. It provides a way of solving complex
problems through abstractions of a higher level (e.g. agents, roles) than the ones used
by the object oriented and procedural paradigms (see Figure 1). A multi agent system
(MAS) is a web of agents that interact with each other by sending and receiving mes-
sages and with the external environment by observing and affecting it.
A MAS is based on multiple threads of execution and asynchronous exchange of data
between the agents. From the testing perspective, these characteristics bring many new
challenges to software testability. Traditionally, a software behavior results from a se-
quential execution of instructions. This kind of behavior can be easily understood and
tested, since there is an expected behavior we can reference to. In a MAS, however, the
expected behavior is less tangible, since it results from several sequences of instruc-
tions (the agents) that operates in parallel and communicates with each other.
According to IEEE std. 610.12, software testability is the degree to which a system or
component facilitates the establishment of a test criteria and the performance of tests to
determine whether those criteria have been met. The testability has two facets [4, 34]:

• Controllability: o test a component we must be able to control its input (and in-
ternal state).

• Observability: o test a component we must be able to observe its outputs.

The obstacles to controllability and observability in a multi-agent system (MAS) result
from the following characteristics: (i) an agent is an autonomous entity, and as a con-
sequence, it is hard to be controlled by a testing tool; (ii) the agents´ beliefs are embed-
ded in the agents, and thus they cannot be easily observed and controlled by a testing
tool – almost always a testing tool can only observe an agent by its interactions with the
other agents and with the environment.

R1 R3

R2 R4

Problem Domain

R6 R8

R5 R7

functions

files

modules

Procedural

How?

functions

files

modules

Procedural

How?

Object Oriented

Object Attribute Method

Class

What?

Object Oriented

Object Attribute Method

Class

What?

Agent Oriented

Agent Roles Messages

Organization Protocols

Who?
Which roles?

Agent Oriented

Agent Roles Messages

Organization Protocols

Who?
Which roles?

Figure 1. Agent Oriented Development a new level of abstraction.

Testing is a critical activity of software development. Software tests tell developers that
the application's pieces are working as designed, and give them confidence that the
system meets its requirements. Testing a whole system manually is an exhaustive and
imprecise process. The importance and usefulness of test automation approaches to

 Requirements

 Design Elements

Legend:

 2

assure the software quality as a whole have been advocated by agile development
methodologies, such as Extreme Programming. Test automation approaches has been
gradually adopted by many software development companies [31, 32]. Experience re-
ports [31, 35, 36, 30] issued by software companies have been shown that automatic
tests can significantly improve the system quality as well as the development cost of
the system.
A test automation approach is crucial to enable a wide adoption of Agent Technology.
Such approach should account for the challenges of MAS testability described previ-
ously. In this work, we propose a testing infra-structure, which allows the MAS de-
veloper to define automatic tests of different levels (unit, integration and system lev-
els). We also explore the integration of testing activities during the MAS development
process, and discuss how a MAS can be gradually tested using the infra-structure pro-
posed here. Although we focus on unit and integration test levels we show how this
infrastructure can be easily extended to give a better support to system tests.

2 Background
This section briefly revisits the basic concepts of Aspect-oriented software develop-
ment (AOSD) and research work on agent-oriented testing approaches.

2.1 Aspect Oriented Software Development
Aspect-oriented software development (AOSD) [19, 13] has emerged as a technique for
improving the separation of crosscutting concerns. A concern is part of a problem that
we want to treat as a single conceptual unit, and a crosscutting concern is a concern
whose implementation is spread over several system modules. AOSD addresses the
modularization of these concerns by providing a new abstraction, called aspect, which
makes it possible to separate and compose the crosscutting concerns to produce the
overall system.
AspectJ [18] is the most used aspect oriented programming language. It includes
AOSD concepts in the Java programming language. The main concepts are the follow-
ing: (i) join points – are well-defined locations within the base code where a concern
can crosscut the application. Examples of join points are method calls and method exe-
cutions; (ii) pointcuts – represent a collection of join points; and (iii) advices – are a
special method-like construction of aspects which are used to attach new crosscutting
behaviors along the pointcuts.
Over the last years, the software industry has also given more attention to AOSD tech-
niques. Many available software products, such as the JBoss application server and the
Spring integration framework, have adopted the use of aspect-oriented techniques to
address traditional crosscutting concerns (transaction demarcation, security, monitor-
ing, synchronization, cache, dynamic adaptation) encountered in the development of
complex and modern systems. Aspect-oriented techniques have been also used to sup-
port testing and static analysis activities [38]. In this work, we use aspect-oriented tech-
niques to support the testing of asynchronous agents.
Researchers on agent-oriented software engineering have also started to explore the
benefits of AOSD in the development of MAS, such as: (i) in the modularization of
agent mobility [40] and learning [39] properties; and (ii) the incorporation of aspects in
agent models [4] and architectures [39].

2.2 Current Approaches for Testing MAS
Agent-Oriented Software Engineering (AOSE) methodologies, as they have been pro-
posed so far, focus mainly on disciplined approaches to analyze, design and imple-

 3

ment MASs [7]. However, little attention has been paid to how multi-agent systems
could be tested [7]. How can be seen in table 1 only a few of these methodologies de-
fine an explicit verification process. MaSE [12] and MAS-CommonKADs [22] method-
ologies propose a verification phase based on model checking to support automatic
verification of inter-agent communications. Desire [24] proposes a verification phase
based on mathematical proofs - the purpose of this process is to prove that, under a
certain set of assumptions, a system adheres to a certain set of properties. Only some
iterative methodologies propose incremental testing processes with supporting tools.
These include: AGILE [28] and Agile PASSI [6].
AGILE [28] defines a testing phase based on the JUnit test framework [17]. In order to
use this tool, designed for OO testing, in the MAS testing context, it needs to imple-
ment a sequential agent platform, used strictly during tests, which simulates asyn-
chronous message-passing. Executing unit tests in an environment different from the
production environment results in a set of tests that does not adequately explore the
hidden places for failures caused by the timing conditions inherent in real asynchro-
nous applications. Agile PASSI [6] proposes a framework to support tests of single a-
gents. Despite proposing valuable ideas concerning MAS potential levels of tests,
PASSI testing approach is poorly documented and does not offer techniques to help
developers in the low level design of unit test cases.

Table 1. The Testing characteristics of AO methodologies.

 Characteristics

AO
Methodologies
and Process Models

Define an
explicit verifi-
cation phase

Levels of
testing de-
fined by
the approach

Offers a
tool for
test auto-
mation

Offers a
tool for
test case
generation

Evaluate the
effectiveness
of the test
approach

AGILE [28]
Based on
Testing Unit Yes No No

Agile PASSI [6].
Based on
Testing Unit Yes No No

AOR No - - - -

Desire

Based on
mathematical
proofs - - - -

Gaia No - - - -

Ingenias No - - - -

MaSE

Based on
model chec-
king - - - -

MAS-CommonKADs

Based on
model chec-
king - - - -

MASSIVE No - - - -

OPM/MAS No - - - -

Prometheus No -

Offers a
debugging
tool (*) - -

Roadmap No - - - -

Tropos No - - - -

(*) The debugging tool can be used on test activities to help developers when diagnosing the cause of a
fault detected by a test.

A related concept to software testing is software debugging. The first is an activity in
which a system or component is executed under specified conditions, and the results
are observed and checked against expected results. The last aims at detecting, locating,
and correcting faults in a computer program executing in real conditions. Though not
being strongly related to the present work some works on MAS debugging are worth

 4

to be mentioned, since they propose interesting ideas that can also be useful when
building tests for MAS.

Prometheus methodology [35] propose the use of a central debugging agent, an agent
inserted into a standard multi agent system which is responsible for intercepting all
messages sent between the agents in the system. The debugging agent uses Petri nets
to represent the possible protocols between agents and to detect the possible faults on
agent communication. The ACLAnalyser tool [25] uses conventional data mining tech-
niques such as clustering and summarizing to analyze and present results to the de-
veloper during a MAS debugging. Both works restate that debugging the communica-
tion that occurs between agents can be a quite difficult process.
The difficulty associated to debugging tasks of MASs and to the lack of detailed testing
methods for MASs motivated the present work, which proposes a testing approach
and a supporting testing infra structure for the design and execution of MAS tests. The
testing approach and corresponding infrastructure propose here is not attached to a
specific methodology or process model. But it can be easily integrated into any of the
AOSE methodology listed above. The testing approach should be integrated in the ini-
tial stages of the development approach as stated in section 3.

3 Levels of Testing
Over the last years, the view of testing has evolved, and testing is no longer seen as an
activity which starts only after the coding phase is completed. Software testing is now
seen as a whole process that permeates the development and maintenance activities.
Thus, each development/maintenance activity should have a corresponding test activ-
ity. Figure 2 shows a correspondence between development process phases and test
levels [27].

Figure 2. Development and Testing processes correspondence.

Each test level, showed in Figure 2, focuses on a particular class of faults [27]: (i) Ac-
ceptance Test aims at finding defects in requirements [27]; (ii) System Test aims at
finding defects in system specification; (iii) Integration Test intends to find incompati-
bilities/inconsistencies between elements’ interfaces; (iv) and Unit Test verifies
whether software units of modularity operate as defined in their specification. This
principle applies no matter what software life cycle is used [27]. These same levels can
be used to express a MASs testing process. In this paper we particularly deal with the
unit and integration test levels in MASs.

3.1 Object Oriented Testing x Agent Oriented Testing
There are different proposals for representing an agent. Our approach is based in the
definition detailed in [29] and presented below:

Requirement Elicitation

Architecture Definition

Design

Implementation

Acceptance Tests

 System Tests

Integration Tests

Unit Tests

 5

Agents interact with other agents by sending and receiving messages, and ob-
serve/affect the environment. This kind of interaction differs in nature from the direct
method call that takes place in OO systems. However, we can make a parallel between
the way agents and classes can be unit tested. Figure 3 illustrates white box tests and
black box tests of agents and objects.

Tester Agent A Tester

Environment

Tester

Environment

Data

send message
send message

 message response

1

Agent A

beliefs
goals
plans

(c) AO Black Box Testing (d) AO White Box Testing

1

2

Tester

Tester
method output

(a) OO Black Box Testing

method call

Tester

(b) AO White Box Testing

method call

Class

data access

send optional message

send message

method call

method output

Legend:

Class

3

2

Figure 3. Black Box Unit Testing x Unit White Unit Box Testing

In the black box approach, in order to test a class the developer calls each class
method, passing valid and invalid arguments, and checks whether the method output
corresponds to the expected output (see Figure 3(a)) [27]. Similarly, a developer can
test an agent (see Figure 3(c)) by sending a message to it (step 1), checking whether the
message response corresponds to what was expected1 (step 2) and checking whether
environment was affected as expected (step 3).
The white box approach needs the tester to look into the code and find out which parts
of the code is malfunctioning, even if the method output is correct there can be a bug
inside it. The class white box testing analyses the method execution flow to detect
bugs. Figure 3(d) depicts a white box testing approach in which an agent receives an
input which can be a message or an event from the environment event (clock event)
and the testing tool verifies whether the agent performs as expected by accessing the
agents beliefs, goals and plans. The white box testing is strongly related with the agent
implementation – the way the beliefs, goals and plans are implemented. On the other
hand, the black box testing approach is based on the agent interface with the external
environment. As a consequence, modifications on the agent implementation that does

1 The message response check comprises a set of assertions: if the agent does not send a response mes-
sage with a specific content, of a specific type or within a pre-defined amount of time.

An agent is an autonomous, adaptive and interactive element
that has a mental state. The mental state of an agent is com-
prised by: beliefs, goals, plans and actions. Every agent of the
MAS plays at least one role in an organization. One of the at-
tributes of a role is a number of protocols, which define the way
that it can interact with other roles.

 6

not affect its “interface” will not break the tests implemented in the black box ap-
proach but will probably break the tests developed according the white box one.
The testing infrastructure described in this paper support a black box testing approach
for agents. We have been performing some experiments using a white box testing ap-
proach which accesses the agents beliefs using computational reflection and aspect-
oriented programming but it is out of the scope of this work.
Knowing that the single agents work well in isolation is not enough. We need to test
the interactions between them: we need to progressively integrate agents and select
tests to detect possible problems in their communications – integration test level. Dif-
ferent approaches can be used to progressively integrate the agents. To define these
integration approaches some concepts can be borrowed from Object Oriented software
engineering: (i) top-down; (ii) bottom-up; (iii)Big-Bang. Such integration strategies are
based on the dependencies between system elements. In OO context, such dependen-
cies are represented by: which module calls which other. In AO context such depend-
encies are represented by: to whom an agent provides services or on whom it relies for
services.
After incrementally testing subsets of agents, the whole society should be tested. The
system test is the final validation step, and is performed once the whole system is de-
veloped. System tests can check whether the MAS functional and performance re-
quirements were addressed. It can check for instance whether a specific task that needs
agents’ cooperation can be solved.

4 Overview of the Approach
In our approach we defined a “mock” version of a system agent to unit test agents. It is
called Mock Agent. A Mock Agent interacts with an agent under test. It is responsible
for sending messages to it, checking its response and checking whether the environ-
ment was affected as expected.
As we mentioned previously, in order to test a component we should be able to control
its inputs and observe its outputs. Thus, to test an agent we need: (i) to control the en-
vironment and the interaction between the Mock Agents and the agent under test (the
test inputs); and (ii) to observe the behavior of the agent under test (test output).
The job of controlling the interaction between the Mock Agents and the agent under
test in our approach uses a Synchronizer element. This element is responsible for de-
fining the interaction order between the Mock Agents and the agent under test. A
Monitor element is adopted by our approach to do the job of observing the agents’ be-
haviors. Figure 4 depicts all the participants that compose our agent unit test approach:

• Agent Under Test (AUT): is the agent whose behavior is to be verified by the exe-
cution of unit testing;

• Mock Agent: consists in a fake implementation of a real agent that interacts with
the AUT. Its purpose is to simulate a real agent strictly for testing the AUT;

• Monitor: is responsible for monitoring agents’ states;

• Synchronizer: orchestrates the test scenario. It defines the order in which the
Mock Agents are going to send messages to the agent under test;

• Test Scenario: define a scenario – a set of conditions – to which the AUT will be
exposed, and verifies whether this agent obeys its specification under these condi-
tions. Every scenario comprises only one AUT and one or more Mock Agents;

• Test Suite: consists of a set of Test Scenarios and a set of operations performed to
prepare the test environment before a Test Scenario starts.

 7

AUT

Agent's platform

Interaction Order
List

6

7

8

9

10

AUT

Agent's platform

Message sending

Method invocation

Notification

Agent

Aspect

Adds moniitoring code.

Adds synchronizatoin code

Test Suite

Test Scenario 1

Test Scenario 2

Test Suite

Test Scenario 2

Test Scenario 1

Legend:

2

3

4

5

1

12

13

11

Mock_Agent_1

Mock_Agent_2

Mock_Agent_2

Mock_Agent_2

AUT_id

MockAgent2_id

MockAgent2_id

MockAgent1_id

MockAgent2_id

MockAgent1_id
MockAgent1_id

Work_Done
Agents

 Running
Agents

 Created
Agents

 Running
Agents

 Created
Agents

Work_Done
Agents

Monitor
Monitor

Synchronizer

Figure 4. Workflow between the participants of a unit test.

Each agent unit test follows the common structure depicted in Figure 4. In step 1, the
Test Suite creates the agent’s platform and whatever elements needed to set up the test
environment. After that, a Test Scenario is started. Each Test Scenario creates one or
more Mock Agents that interact with the AUT (steps 2 and 3) – the number of Mock
Agents varies according to the Test Scenario being defined. Next, it creates the AUT
(step 4) and asks the Agent Monitor to be notified when the interaction between the
AUT and the Mock Agents finishes (step 5).
At this point, the AUT and the Mock Agents start to interact with the AUT. The Mock
Agents send messages to the AUT, which then replies or vice-versa (steps 6 to 9). They
can repeat steps 6-9 as many times as necessary to perform the test codified in the
Mock Agents’ plans. For instance, the Mock Agent 1 may reply three messages before
finalizing its test activity, and the Mock Agent 2 may reply only one message from
AUT before its plan is done. During this interaction process, the Monitor observes the
agents interaction and keeps track of changes in their life cycle. In order to do that it
uses three lists as illustrated in Figure 4:

• Created Agents List: maintains IDs of the agents that have been created, but are
not running yet – an ID is any information that uniquely identifies an agent;.

• Running Agents List: maintains IDs of the agents in the running state;.

• WorkDone Agents List: maintains IDs of the Mock Agents that have completed
their plan - which is equivalent to a test script.

When a Mock Agent concludes its plan, the Agent Monitor includes the Mock Agent’s ID
in the WorkDone list, and then notifies the Test Scenario that the interaction between the
Mock Agent and the AUT have concluded (step 10). This notification unblocks the Test
Scenario which is now able: (i) to ask the Mock Agents whether or not the AUT acted as
expected (steps 11-12); and (ii) to check whether the environment was affected as ex-
pected (step 13). If there was no such notification, the Test Scenario would not be able
to know when the interactions between the AUT and the Mock Agents had finished –
which means the end of the test scenario. As consequence, the Test Scenario could make
the test final check (final result = expected result?) in an intermediary state, which
could result in a false positive or a false negative test status. This is the reason why the
Monitor is essential to our approach.
The Synchronizer is an optional element in our approach. It is only used when the test
developer needs to establish an order of interaction between the Mock Agents and the
AUT. The Synchronizer keeps an interaction order list which is loaded at the beginning

 8

of the test scenario. This list contains the Mock Agent id that has the right to interact
with the AUT at a specific moment in a test scenario.
In the example illustrated in Figure 4, the Mock Agent 1 must send a message to AUT
before the Mock Agent 2. Thus, we can realize that the test scenario is partially imple-
mented by the plan of each mock, and the Synchronizer is the element responsible for
composing the testing scenario. We can make a parallel between the Synchronizer
element and an Opera Conductor. The same way an opera conductor defines the order
in which each instrument takes place on a Symphony. The Synchronizer is responsible
for defining the moment at which each Mock Agent should take place in a test sce-
nario.
The Monitor and the Synchronizer elements represent two crosscutting concerns from
our approach. Their implementation is necessarily tangled and spread over the code of
mock agents and the AUT. In order to prevent the code of these concerns from being
tangled with the code of the agents (been monitored and synchronized, respectively),
we have implemented these elements in our approach as aspects [14, 26].

4.1 Overcoming Obstacles to Testability
As mentioned in Section 1, to test an agent we should be able to control its inputs (i.e
messages received from other agents and data read form the environment) and observe
its outputs (i.e messages sent by the agent and how it affects the environment).
In order to control the agents inputs the approach uses: (i) the Mock Agent which is re-
sponsible for sending messages to the agent under test; and the Synchronizer which
defines the order in which the Mock Agents should send messages and the agent un-
der test; and (iii) the test scenario which configurates the environment before the test
execution.
In order to observe the agents outputs the approach uses: (i) the Monitor element that
observes and store information about the agents´ states; and the (ii) Mock Agent which
besides sending messages to the agent under test, is also responsible for checking its
response and checking whether the environment was affected as expected.
The Monitor and the Synchronizer elements represent two crosscutting concerns from
our approach. Their implementation is necessarily tangled and spread over the code of
mock agents and the AUT. In order to prevent the code of these concerns from being
tangled with the code of the agents (been monitored and synchronized, respectively),
we have implemented these elements in our approach as aspects.

4.2 Test Scenarios Design
A very important consideration in program testing is the design of effective test sce-
narios [27]. Testing, however creative and seemingly complete, cannot guarantee the
absence of faults [27]. Test scenario design is important because complete testing is al-
most impossible; a test of any non trivial program is usually incomplete. The obvious
strategy, then, is to try to make tests as complete as possible. Given constraints on time
and cost, the key issue of testing becomes: What subset of all possible test scenarios has
the chance of detecting the largest number of faults?
In general, the least effective method of all is to arbitrarily choose a set of test scenar-
ios. In terms of the likelihood of detecting most of the faults, an arbitrarily selected col-
lection of test scenarios has little chance of being an optimal or even close to optimal
subset. Test approaches for MASs proposed so far do not define a method for test-
scenario selection. This approach adopts an error-guessing test case design technique
[27]. The basic idea of an error-guessing technique is to enumerate a list of scenarios in
which exceptional conditions may occur and then write tests based on the list.

 9

Thus, for each agent of a MAS2 we should define a set of exceptional scenarios in
which the agent is responsible for performing a specific task. This agent will be the
AUT of the test scenario and all the other agents that interact with it in this scenario
will be represented as Mock Agents. We can also have exceptional scenarios in which
two or more real agents (AUTs) interacts with a set of mock agents. These scenarios
represent an integration test between two or more agents. Table 1 contains a template
for a test scenario description in this testing approach. Next section, gives an example
of how this template is used to define test scenarios for the Expert Committee system
(Section 3.1).

Table 2. Template for a test scenario.

Agent

<The Agent Under Test>

<Describes the test scenario input which comprises

on the messages that should be sent to AUT in this

scenario and the state of data repositories or other

environmental resource in the test scenario>

Scenario 1

Input

Output

<Describes the expected behaviors for the AUT –

whether it should send an specific message or should

affect an specific resource from the environment>

5 JAT Design and Implementation
Figure 5 depicts the main elements of JAT (implemented on top of JADE as mentioned
earlier). We discuss these elements next.

JADEMockAgent
The JADEMockAgent implements the Mock Agent concept in JAT. The JADE-

MockAgent, as any other agent in this platform, extends the Agent class (see Figure 5).
The JADEMockAgent plan (represented by a JADE Behavior) is analogous to a test
script, since it defines the messages that should be JADEMockAgent needs to report
the test result (success or failure) to the Test Scenario, that is in charge of examining
the test result (see JADETestCase description below). There are many ways of report-
ing the result of an agent interaction test. For example, one may include the test result
in an ACL (Agent Communication Language) message and send it to another agent
that would generate a test report. Another alternative is to define an interface that con-
tains a set of methods that should be implemented by an agent that wants to report the
result of the interaction with the AUT. In our particular implementation, we have cho-
sen the second option. Thus, the JADEMockAgent implements the TestReporter inter-
face illustrated in Figure 5.

2 If there are strict costs or time constraints, this technique should be applied only to the subset of MAS
agents responsible for the “core” functionalities.

 10

JUnit Framework JADE Middleware

JAT Framework

Monitoring ConcernM

Synchronization ConcernS

Legend:

<<crosscuts>>
<<crosscuts>>

<<crosscuts>>

<<crosscuts>>

S

<<uses>>

Agent State Machine ConcernA

M

A

Figure 5. The JAT framework Design.

AgentStateMachine

To keep track of an agent’s state transitions we could define an aspect to directly
advise the points to be tracked (monitored) [6, 9]. However, whenever the JADE plat-
form evolves our framework would have to be evolved too, since such a monitoring
aspect would be strongly coupled to the JADE platform implementation.

Recently, Sullivan et al [31, 16] have proposed a new approach to aspect-oriented
design and implementation based on the definition of crosscutting interfaces (XPI) be-
tween aspects and classes. An XPI represents a crosscutting abstraction that is not well
represented in OO design. Such abstraction is useful for improving the reasoning
about how aspects affect the code, and can be perceived as a kind of an aspectual hot
spot when applied to frameworks [11,21].

The agent state machines themselves, though a valuable concept, are not exposed
as explicit design-level abstractions in the JADE platform’s OO design. Nor is the case
for a design that includes a monitoring aspect that tracks the agents’ state transitions.
The agent state machine is a crosscutting concept and as such can be represented by an
XPI, and then, exposed as an explicit design-level abstraction, in the form of Agent-
StateMachine XPI, depicted in Figure 5.

As a result of this design decision, the Monitor aspect (detailed next) is not
strongly coupled to the JADE platform’s implementation details. It accesses the Agent-
StateMachine XPI, which acts as intermediary between the Monitor aspect and the
platform classes. When a new release of the JADE platform is deployed only the
AgentStateMachine XPI will need to be updated, making the JAT framework resilient
to changes in the underlying platform. The AgentStateMachine XPI can be represented
by an aspect [16] in AspectJ3 language which contains a set of pointcuts, as illustrated
in the code snippet below.

3 Please refer to [6] for AspectJ syntax details.

 11

Monitor

The Monitor aspect reuses the pointcuts defined on the AgentStateMachine XPI in
order to monitor agents’ state transactions. It keeps track of the agents’ current states
in a set of internal data structures, and makes this information available to other
framework components, such as the JADEMockAgents and the JADETestScenario,
during test execution. The agents’ state information is available through a set of acces-
sor methods and some blocking methods such as waitUntilTestFinishes() that are de-
tailed in Section 6.

privileged public aspect Monitor {

 private StateLists stLists = StateLists.getInstance();

 ...

 before(Agent o):

 AgentStateMachine.from_created_to_running(o){
String nome = o.getLocalName();

 stLists.includeInRunningAgent(nome);
 }
 ...

 public void waitUntilTestHasFinished (String mockAgentID){

 ...

 while (!stList.isWorkDone(mockAgentID) &&

 (MAXTIMEOUT > timeSpent)){

 wait(20000);

 ...
 }
 }
}

Listing 2. AgentMonitor partial code.

public aspect AgentStateMachine {

 pointcut created(): call(public

 ContainerController.createNewAgent(..));

 pointcut from_created_to_running(Agent o):

 execution(protected void Agent.setup()) &&

 target(o);

 pointcut from_running_to_dead (Agent o):

 execution(public void Agent.doDelete()) &&

 target(o);

 pointcut from_runnig_to_mockagworkdone(Agent o):

 (execution(public void

 org.jadeunit.TestReporter.setTestResult(..))

 && target(o);

 }

Listing 1. AgentStateMachine XPI.

 12

Synchronizer

The Synchronizer aspect intercepts the code of the JADEMockAgent class responsible
for sending messages and appends additional behavior before the send message code,
which makes the mock agent check whether it is its turn to send a message to AUT.
The Synchronizer element was implemented using AspectJ language [27]. The partial
code of the Synchronizer is illustrated below.

The Synchronizer aspect intercepts the code of the JADEMockAgent responsible for send-
ing messages (lines 3-4). It adds an extra piece of code before the send message code
(lines 6-15), which makes the mock agent checks whether it is its turn to send a mes-
sage to AUT. The OrderList contains the ids of the mock agents that should send a
message to AUT in a specific test scenario, ordered by the interaction priority (line 7).
Thus, if the orderList.checkTurn() returns true it means that the agent can send a
message to AUT, otherwise the mock agent is going to sleep and a few seconds latter it
wakes up to check whether its turn had arrived (lines 10-12).

JADETestCase

As depicted in Figure 5, instead of creating a testing tool from scratch to build and
execute the JADE agent test scenarios, we extend the JUnit framework [14] to support
JADE agent tests. This should lower the developers’ learning curve if they are already
familiar with JUnit. Hence, JADETestCase consists of a set of Test Scenarios (JUnit test
methods) and a set of operations to prepare the test environment before a Test Scenario
starts.

5.1 Mock Agents Library
Since the implementation of mock objects during class tests can be a costly task, librar-
ies of mock objects for commonly used components [20] have been developed to sup-
port OO testing (e.g. mocks for Web Servers and Java.io classes). In our approach we
have been using interaction protocols specifications as a source of information to en-
able the implementation of a library of Mock Agents.
Often the conversation between agents follows typical patterns, in which a certain se-
quence of messages is expected, at each point in the conversation. These patterns of
message exchange are called interaction protocols. The Foundation for Intelligent Physi-

1. public aspect Synchronizer {
2.
3. pointcut MockSendMessage(...):
4. call(... org.pucjadeunit.JADEMockAgent.send(..))...;
5.
6. before(...) : MockSendMessage(agent,message) {
7. OrderList orderList = OrderList.getInstance();
8. //The agent only sends the message if it is
9. //his turn otherwise he sleeps.
10. while (!orderList.checkTurn(agent.getAID()) {
11. ...
12. Thread.sleep(500);
13. ...
14. }
15. }
16.}

Listing 3. Synchornizer partial code.

 13

cal Agents (FIPA) has catalogued a set of Interaction Protocols (IPs)4 that are used in
various scenarios of MASs. Examples of the IPs available in FIPA library are: the con-
tract-net protocol – which are often followed between a buyer agent and a seller agent
of a product; the request interaction protocol; and the query interaction protocol. Each
protocol illustrates the roles that take part on a conversation and the sequence of mes-
sages exchanged between these roles. We have implemented mock objects for the roles
that takes part on some of the FIPA compliant interaction protocols.

5.2 Generating the Mock Agents Code
A mock agent is a simple implementation of a real agent, which follows a deterministic
behavior and expects a set of messages to be received from the AUT. Each mock agent
obeys a similar structure: (i) it is a JADE agent that contains one single behavior; and
(ii) inside this behavior the mock agent receives and send messages according to a spe-
cific protocol (application specific or FIPA compliant protocol).
To reduce the cost of generating a set of mock agents per test scenario, we defined a
generation template-based approach for mock agents which generates the code of a
mock from a partial5 protocol specification defined in an XML file. The MockAgentGen-
erator class illustrated in Figure 4 is responsible for reading this XML file and generat-
ing a JADEMockAgent. Next section illustrates one example of a mock agent generation.

5.3 JAT-Based Testing Approach Workflow
The workflow illustrated in Figure 6, shows each activity performed in the agent test-
ing approach proposed here. During the test case design the developer refers to the
system documentation, the interaction protocols specification and the test design tech-
nique defined in Section 3.2, in order to specify a set of test cases. During the JADE test
case implementation, the developer implements the JADE TestCases, and TestSuites
and the Mock Agents specified in the test case design tables – some Mock Agents can
also be reused from the library. After implementing these testing components the test
of JADE agents are executed in JAT framework. After the test execution, the frame-
work can generate any one of the Test Result reports available in JUnit framework.

4 FIPA compliant interaction protocols are defined in the context of a conversation. By their nature,
agents can engage in multiple dialogues, simultaneously. The term conversation is used to denote
any particular instance of such a dialogue. Thus, the agent may be concurrently engaged in multiple
conversations, with different agents, within different IPs.

5 The protocol specification is partial because it illustrates the messages that should be sent by only
one participant of a protocol.

 14

Figure 6. JAT Workflow.

6 Case Studies
Our case studies include: a Book Trading System, which is available with the JADE
Platform distribution [1]; the Expert Committee System [32] a MAS system for paper
submission, distribution and notification which is a benchmark for agents technolo-
gies; and the Auction System which was developed by one of the authors in a Test
Driven approach that used JAT as a design and test supporting tool [10].

6.1 Book trading System
To illustrate our agent test approach, we will work through an example. Consider an
application of book-trading, in which each agent can play a BookSeller role, a Book-
Buyer role or both. Figure 7 (B) details the interaction protocol between these roles. We
can realize that the BookBuyer agent and the BookSeller agent follow the contract-net
FIPA compliant protocol illustrated in Figure 7 (A).
According Figure 7 (B), as soon as a BookSeller agent joins the environment, it registers
itself in a Service Directory as a “book-seller” and starts to wait for book-buying re-
quests. When a BookBuyer agent joins the environment, it initially looks for the agents
already registered in the Service Directory as “book-sellers”. After that, it sends a “cfp”
message to all the agents registered as “book-sellers”. When the BookSeller agent re-
ceives a “cfp” message from a BookBuyer, it searches in its catalogue for the requested
book. If it is available, the BookSeller agent sends a “propose” message in reply to
“cfp” message, whose content is the book price. If on the other hand, the BookSeller
agent does not have the book on catalogue it will send a “refuse” message informing
the BookBuyer agent that the book is not available. The BookBuyer agent receives all
proposals/refusals from seller agents and chooses the agent with the best offer. Then,
it sends the chosen seller a “purchase” message. When the BookSeller agent receives a
“purchase” message it removes the book from the catalogue and sends an “inform”
message to notify to the BookBuyer agent that the book sale was complete. However, if
for any reason the book is no more available in the catalogue the BookSeller agent
sends a “failure” message informing BookBuyer agent that the requested book is no
more available. If the BookBuyer agent receives a message indicating that the sale was

 15

complete, the agent can terminate. Otherwise, it will re-execute its plan and try to buy
the book again from some other agent.

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

BookBuyer BookSeller ServicesDirectory

registerService("bookseller")

look for book seller services

request(BookTitle)

search book catalogue

[if(!ok)]

refuse

[if(ok)]

propose(BookProposal)

evaluate

[if(!ok)]

refuse

[if(ok)]

accept

remove book from catalogue

[if(!ok)]

inform failure

[if(ok)]

informe done

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

EA 5.1 Unregistered Trial Version EA 5.1 Unregistered Trial Version

Initiator Participant

call for participation

evaluate

[if(!ok)]

refuse

[if(ok)]

propose

evaluate

[if(!ok)]

refuse

[if(ok)]

accept

performContract

[if(!ok)]

inform failure

[if(ok)]

informe done

(A) (B)

Figure 7. Sequence diagrams of (A) FIPA contract-net interaction protocol and (B) the
Book Trading system.

The first step is to specify the test scenario to be automated. At this step, we adopt an
error-guessing test case design technique [26], how was described in section 4.2, to
support the definition of test scenariosWe pick one of the test scenarios (see Table 3).
The agent(s) that should deal with the exceptional condition will be the AUT(s) of the
test scenario, and all the other agents that interact with it/them in this scenario (caus-
ing the exceptional condition) will be represented as Mock Agents. Table 3 contains a
description of an exceptional scenario to be automatically tested using JAT.

 Table 3. Example of a Test Scenario

Agent Under Test BookSeller agent

Test Scenario

Expected Result

Two BookBuyer agents try to
buy the same book from the
BookSeller, but it has only one
copy available.

The BookBuyer should sell the
book to the first agent that
requests the book and reject
the buying request from the
other.

 16

To implement a Mock Agent for the BookBuyer agent - that will be responsible for test-
ing the BookSeller agent in this scenario - the developer must define the communica-
tion protocol in an XML file, and the MockAgentGenerator generates the code of the
Mock Agent as illustrated in Listing 3. In this example the shaded code was included
by the developer after the code generation.

The next step is to compose the test scenario in which two instances of the Book-
BuyerMockAgent depicted above are going to interact with the BookSeller agent
(AUT). The code in Listing 5 illustrates the JADETestCase that implements this test
scenario.

public class BookBuyerMockAgent extends JADEMockAgent{

 ...

 public class MockAgentBehaviour extends OneShotBehaviour{

 public void action() {

 try {

 sendMessage(ACLMessage.CFP,seller,targetBookTitle);

 ACLMessage msg = blockReceiveMessage(30000,ACLMessage.PROPOSE);

 checkFloatValue(msg.getContent);

 sendMessage(ACLMessage.ACCEPT_PROPOSAL,seller,targetBookTitle);

 msg = blockReceiveMessage(30000,ACLMessage.INFORM,ACLMessage.FAILURE);

 if (order == FIRST &&

 msg.getPerformative == ACLMessage.INFORM){
 setTestResult(“OK”);

 else if (order == SECOND &&

 msg.getPerformative == ACLMessage.FAILURE) {
 setTestResult(”OK”);

 } else {

 setTestResult(“ERR:Protocol Broken.”);

 } catch (Exception e) {

 setTestResult("ERR: "+ e);
 }
 }
 }

Listing 4. BookBuyer Mock Agent partial code.

1. public class BookTradingTesteCase extends JADETestCase {

2.
3.

4. public void testBookTradingScena1(){

5.
6. //Load Data Repositories
7. …

8. startAUT("seller","BookSeller");

9. startMockAgent("buyer1","BookBuyerMockAgent",FIRST);

10. startMockAgent("buyer2","BookBuyerMockAgent",SECOND);

11.
12. //The Test Scenario block until the mock
13. //agents finishes their interaction with the AUT.
14. Monitor.aspectOf().waitUntilTestHasFinished("buyer1");
15. Monitor.aspectOf().waitUntilTestHasFinished("buyer2");
16.
17. //1. Checking Expected Result:

18. assertInteractionOK("buyer1");

19. assertInteractionOK("buyer2");

20.
21. //2.Check Agent’s Beliefs

22. Object belief = getBelief(“seller”, “catalogue”);

 ...

23. assertEquals(expectedBelief,belief);

23. }
25. ...
26. }

Listing 5. A JADETestCase partial code.

 17

According to this partial code, firstly, the test harness is prepared (line 6), which com-
prises the load of the test data necessary for the test scenario. Then, the BookSeller
agent as well as the Mock Agents are created through methods available in the JAT
framework (lines 8-10). The method waitUntilTestHasFinished (lines 14-15) blocks the
test scenario execution until the Monitor detects that the plan of each mock agent has
finished. When the test scenario is unblocked, it is time to check the test scenario re-
sults against the expected ones (lines 24-30). The getBelief() method (line 22) gives a
white-box flavor to the mock-agent-based black-box tests developed in JAT. This
method access through reflection information embedded in the agent under test,
which can be useful to the test scenario. The returned belief is then compared to its ex-
pected value (line 23).
Since the order in which the BookBuyer mock agents interact with the AUT is relevant
to build this scenario, the test developer needs to build a synchronization file. This file
is loaded by the Synchronizer aspect mentioned before the execution the test scenario.
The Synchronizer also appends additional code before the send message code of each
mock agent on this scenario, which makes the mock agents check whether it is turn to
send a message to AUT. Since the synchronization code is included on an aspect it is
not necessary to add extra code inside the mock agents in order to synchronize them.
As a consequence, the same mock agent can be used in a non-synchronized and on a
synchronized testing scenario without the necessity of changing the code of the mock
agent. The code bellow illustrates how should be an order list to synchronize the inter-
action between the mock reviewers and the chair.

6.2 The Expert Committee System
Consider a MAS that supports the management of paper reviewing processes for a
conference, from herein referred to as Expert Committee [18, 20]. The Expert Commit-
tee system encompasses user agents that are software assistants to represent system
users in submission, reviewing and chairing activities. The basic functionality of the
user agents is to infer and keep information about the system users as well as collabo-
rate with other user agents in order to perform the main functionalities of the Expert
Committee system. Each user agent can play one of the following roles:

• Author: it is responsible for receiving a paper submission request from an author
user and submitting the paper to a specific event. Its beliefs include information about
the author (e.g. author’s institution);

• Chair: its responsibilities include distributing papers among reviewers, contact-
ing the Coordinator asking for new reviewers when the number of reviewers for a spe-
cific paper is not enough, and notifying the authors about the paper acceptance and
rejection. The chair beliefs comprise information about the conference, including dead-
lines, the list of reviewers, and the list of submitted papers;

• Reviewer: it judges the chair proposals. A reviewer can accept or reject a review
proposal and once it accepts to review a paper it should send a paper evaluation to the
chair before an evaluation deadline. Its beliefs include information about the reviewer
(e.g. reviewer’s institution and research interests);

<?xml version="1.0" encoding="UTF-8"?>
<JAT>
 <interactioOrder>
 <agentturn>buyer2</agentturn>
 <agentturn>buyer1</agentturn>
 <agentturn>buyer1</agentturn>
 <agentturn>buyer2</agentturn>
 </interactioOrder>
</JAT>

Listing 6: A synchronization file.

 18

• Coordinator: it is in charge of inviting additional reviewers to help in the revi-
sion of specific papers, in case the chair notifies the Coordinator that there are not
enough reviewers to a specific paper.
Figure 8 illustrates the main interactions between the Expert Committee agents’ roles
as well as the information repositories that can be accessed by each role.

CFP

ACCEPT or REFUSE

INFORM <eval_accepted> or REJECT

 INFORM <paper_evaluation>

 INFORM_FINAL_RESULT

Paper Repository

Chair

Coordinator

 ASK_MORE_REVIWERS <reviiewers attributes>

data access

send message

 Legend:

Researchers Info
Repository

Reviewer

Author

Figure 8. The Expert Committee System.

The first step is to define a set of scenarios related to each agent role of this system. We
are going to define these scenarios to the chair role, which is the one responsible for
performing most of the tasks related to the Expert Committee system. Table 4 illus-
trates a set of scenarios related to chairs responsibilities. The words written on italic
represent the agents roles that interact with the chair in the scenario.

Table 4. Test scenarios related to Chair’s responsibilities.

Agent

Chair

Scenario 1

Input

Output

The reviewer does not accept to review the paper, but

after that it sends the paper evaluation to the chair.

The char should reject the paper evaluation

Scenario 2

Input

Output

All the reviewers for an specific paper are of the same

institution of the author.

The chair should ask the coordinator for more reviewers

Scenario 3

Input

Output

There is nor reviewer to review the paper.

The same as Scenario 2.

Scenario 4

Input

Output

The only available reviewer for a specific paper is its

author.

The same as Scenario 2.

Scenario 5

Input

Output

Only two reviewers evaluate the article before the revi-

sion deadline.

The same as Scenario 2.

After defining test scenarios related to some of the chair’s responsibilities. The next
step according this approach is to define automatic tests scenarios. We are going to de-
fine a test scenario to automatically check the Scenario 1 - the other scenarios follows
the same structure.
In this scenario a reviewer should: (i) reject the paper review proposal, and then (ii)
send a message to the chair agent with a paper evaluation. In a correct implementation

 19

of the Expert Committee system, the chair agent should refuse the paper evaluation
sent by this reviewer. To implement the reviewer mock agent we define a XML file
which contains the messages the reviewer mock agent should send. This XML file is
illustrated bellow.

Based on this XML file, the MockAgentGenerator element generates the code for the
mock agent which can be modified and extended by the test developer. In this exam-
ple the shadowed code was included by the developer after the generation.

After implementing the Mock Agent(s), the test developer needs to compose the test
scenario in which the one or more Mock Agent reviewers are going to interact with the
chair (AUT). The code bellow illustrates the JADETestCase that implements this test
scenario.

public class ReviewerMockAgent extends JADEMockAgent{
 …
 public class MockAgentBehaviour extends OneShotBehaviour
 {
 public void action() {
 try {
 CLMessage msg = receiveMessage(30000,ACLMessage.CFP);
 //Rejecting the paper review
 sendMessage(ACLMessage.REJECT_PROPOSAL,msg.getSender(),"I reject");

 //Sending the paper evaluation
 sendMessage(ACLMessage.INFORM,chair,paperRevision);

 //The chair expected behavior
 msg = receiveMessage(30000,ACLMessage.REFUSE);

 } catch (ReplyReceptionFailed e) {
 setTestResult("ERROR: "+ e);
 }
 }
}

Listing 8. A JADETestCase partial code.

<?xml version="1.0" encoding="UTF-8"?>
 <MockAgent package="test" name="ReviewerMockAgent">
 <protocol>
 <receive>
 <performative>ACLMessage.CFP</performative>
 <time>30000</time>
 </receive>
 <send>
 <performative>ACLMessage.REJECT_PROPOSAL</performative>
 <to>chair</to>
 <content>I reject</content>
 </send>
 <send>
 <performative>ACLMessage.INFORM</performative>
 <to>chair</to>
 <content></content>
 </send>
 <receive>
 <performative>ACLMessage.REFUSE</performative>
 <time>30000</time>
 </receive>
 </protocol>
</MockAgent>

Listing 7. A JADETestCase partial code.

 20

According to this partial code, firstly the test harness is prepared (on line 8) - which
comprises the load of the test data necessary to the test scenario. Then, the Mock
Agents as well as the chair agent are created through methods available JAT frame-
work (lines 9-15). Since the order in which the reviewers interact with the AUT is not
relevant to build the test scenario, the test developer does not need to build a synchro-
nization file to this test scenario.
The method waitUntilTestHasFinished() (lines 20-21) blocks the test scenario execu-
tion until the Monitor detects that the plan of each mock agent has finished6. When the
test scenario is unblocked, it is time to check the test scenario results against the ex-
pected ones (lines 24-30).
Since JAT framework is an extension of JUnit framework, we use the same graphical
user interface (GUI) of JUnit framework to execute the tests and show the test report
(see Figure 9).

Figure 9. Test Report generated after the execution of agent tests.

6 We used the aspectOf() static method (lines 20 and 21) available in all AspectJ aspects. The aspec-
tOf() method returns the singleton instance of an aspect, which can be used by any class to call the
public methods from an aspect.

1. public class ExpertCommitteeTestCase
2. extends JADETestCase {
3.
4. //Test method for Scenario1
5. public void testRejectReviewAndPaperAcceptd() {
6.
7. //Load Data Repositories
8. …
9. startMockAgent("reviewer1","test.MockAgentReviewer");
10.
11. startMockAgent("reviewer2","test.MockAgentReviewer");
12.
13. startAUT("chair","agent.Chair", conference);
14.
15.
16.
17. //These methods make the Test Scenario block until
18. //the mock agents finishes its interaction with
19. //the AUT.
20. Monitor.aspectOf().waitUntilTestHasFinished("reviewer1");
21. Monitor.aspectOf().waitUntilTestHasFinished("reviewer2");
22. //Checking Expected Result:
23. //1. Mock Agents Final Interaction Result
24. assertInteractionOK("reviewer1");

25. assertInteractionOK("reviewer2");

27.
28. //2. Status of Data Repositories
29. Paper paper = PapersRepository.get(paperTitle);
30. assertFalse(paper.getStatus(), Paper.ACCEPTED);
31. }
32. …
33.}

Listing 9. A JADETestCase partial code.

 21

We have defined automatic tests to many scenarios existing in the Expert Committee
system, including those ones described in each of the five scenarios described in Table
4. During the execution of the Expert Committee tests, we found many errors, such as:
(i) the chair agent accepted the evaluation sent by a reviewer that had rejected to
evaluate the article and also accepted the paper evaluated by them; and (ii) the chair
finalized the reviewing process of a paper even without receiving the minimum num-
ber of paper evaluations for a paper. The right side of JUnit GUI shows the exact place
(the line of code) in which the errors were detected.

6.3 Results
We progressively tested the three systems described previously using JAT. Firstly,

we defined some unit tests to each agent; based on the error-guessing test case design
technique [26], we defined scenarios in which there were one AUT and a set of mock
agents. Then, integration tests were implemented comprising more then one AUT and
the mock agents that interact with them – here most mock agents were reused from the
unit test scenarios. Finally, we implemented some system tests, in which we did not
check the interaction between the agents – which were already checked in the previous
tests – but we checked whether real agents collaborations addressed the system’s re-
quirements (i.e., the test scenario verified whether the environment was effected as ex-
pected)7. During the execution of these tests we found 21 faults summarized on Table
5.

Table 5, Faults detected when testing Book Trading (BT), Expert Committee (EC), and Auc-

tion (AC) systems.

Fault Type Detected Faults
 BT EC AC All
On MAS Constraints - 2 - 2
 Unimplemented MAS constraint - 2 - 2
On Interaction Protocol 3 6 4 13
 Mismatching Protocols 1 - - 1

 Incomplete Main Flow - 2 1 3

 Missing Alternative Flows 2 4 3 9

On Internal Procedures 1 1 1 3
 Boundary values - - 1 1

 Logic Mistakes 1 1 - 2

TOTAL 4 9 5 19

According to Table 5, some faults were related to unimplemented MAS constrains

(e.g., there should be at lest 3 reviewers per article), and internal procedures which
that did not properly dealt with boundary values or had logic mistakes. However,
most of the faults (13 faults) were found on agents’ interaction protocol implementa-
tions. Some agents did not agree on the protocol to be followed (1 fault) or did not im-
plement the complete main flow of the interaction protocol (3 faults), as a consequence
some agents waited forever for a message that would never be sent. Another interest-
ing finding during tests was that most of the agents were not implemented to deal
with exceptional conditions - they did not implement exceptional flows. A reason may
reside on the fact that the interaction models of multi-agent systems almost always de-
fine only the main execution flow and neglect “what should the agent do if an unex-
pected message is received?”. Thus it is up to the developer to decide what should be
done, and as a consequence, most often than not, this flow is not adequately imple-

7 A detailed description of the test process adopted the tasks and tasks inputs can be found in [10].

 22

mented. The error-prone test selection technique in combination with the mock agents
was a valuable tool to examine how the agents behaved under these exceptional sce-
narios (implemented in alternative flows), and was responsible for uncovering most of
the faults.

7 Evaluation
Fault injection is considered a very useful technique to evaluate the effectiveness of
testing approaches. The key idea of the fault injection technique is to produce faults
during system execution, and verify whether the testing approach precisely detects the
injected fault. Which faults should be injected depends on the fault model associated
with a testing approach.
We have implemented a fault injection [33] tool to try to estimate the effectiveness of
the test cases developed using the mock-agent-based test approach in JAT. The tool,
implemented using Java Annotations and AspectJ, intercepts JADE Agents and intro-
duces the faults specified in our fault model (see Section 3.4).

7.1 The Fault Injector
The fault injector was implemented as an aspect in ApectJ language. It intercepts

the JADE agents code and adds the faulty code on it. The aspects intercepts the agent’s
send() method and adds the fault specified on an annotation, that specifies the specific
fault to be injected. We have define one annotation to each fault described in our fault
model described before. For instance:

• @changePerformative: changes the performative of the message to be sent by an
agent. One attribute of this annotation is the new message performative. This
faults simulates to change the order in which the message was sent, in systems
on which the order of the message is specified by its performative.
@changeContent: replaces the message content by na unexpected one. The at-
tribute of this annotation is a string that comprises the new message content;

• @sleep: blocks the message to be sent during an specified time. The time is speci-
fied in milliseconds, is the annotation attribute.

The Listing 10, illustrates the implementation of each one of these annotations.

In order to inject one of the faults of the fault model on agents code, the developer
only needs to include annotations (and specify values to its attributes) on its meth-

@Retention(RetentionPolicy.RUNTIME)

public @interface ChangeContent {

 String content();

}

@Retention(RetentionPolicy.RUNTIME)

public @interface ChangePerformative {

 int performative() default 0;

}

@Retention(RetentionPolicy.RUNTIME)

public @interface Sleep {

 int time();

}

Listing 10. Definição das anotações criadas.

 23

ods. Listing 11 illustrates the partial code of three methods from three different
agents in which faults were included using the annotations specified above.

Listing 12 illustrates the partial code of the Fault Injector Aspect which uses the in-
formation of Java annotations, detailed above, in order to inject faults on agents
methods.

This aspect defines the pointcut sendMessage() which intercepts every message sent
by a JADE agent. This pointcut is used in combination with the other pointcuts which

1. privileged aspect FaultInjection {

2.

3. pointcut sendMessage(Object b) : call(* Agent.send(..)) && args(b);

4. pointcut annotedWithChangePerformative(ChangePerformative cp) :

5. @withincode(cp);
6.

7. pointcut annotedWithSleep(Sleep s) : @withincode(s);

8.

9. pointcut annotedWithChangContent(ChangeContent con) : @withincode(con);

10.

11. ...

12.

13. void around(Object b,ChangeContent con) :

14. sendMessage(b) && annotedWithChangContent(con) {
15.
16. String content = con.content();
17.
18. ACLMessage message = (ACLMessage)b;
19. message.setContent(content);
20.

21. proceed(b,con);

22. }
23. }

Listing 12. Fault Injector Aspect.

@ChangePerformative(performative = ACLMessage.AGREE)

public void action() {

 ACLMessage msg = myAgent.receive(mt);

 if (msg != null) {

 String title = msg.getContent();

 ACLMessage reply = msg.createReply();

 ...

 send(msg);

}

@Sleep(time = 3000)

public void action() {

 ACLMessage msg = myAgent.receive(mt);

 if (msg != null) {

 String title = msg.getContent();

 ACLMessage reply = msg.createReply();

 ...

 send(msg);

}

@ChangeContent(content = “JAT”)

public void action() {

 ACLMessage msg = myAgent.receive(mt);

 if (msg != null) {

 String title = msg.getContent();

 ACLMessage reply = msg.createReply();

 ...

 send(msg);

}

Listing 11. A JADETestCase partial code.

 24

details the fault to be injected (lines 4-9). Such pointcuts intercept the execution point
in which annotations were defined (e.g., @ChangePerformative, @Sleep and @Change-
Content). This pointcuts are used in combination with sendMessage() pointcut in each
advice of the Fault Injector aspect (line 13). This advice intercepts all execution points
in which a message is sent - sendMessage()- and is annotated with change conted an-
notation - annotedWithChangeContent(). It then replace the content of the message to
be sent by the agent (lines 18-19) by a new content specified as the annotation attribute
(line 16) and then send the corrupted message (line 21).

7.2 Results

We have injected 83 faults inside all the three systems to check whether the test scenar-
ios were able to diagnose the injected faults. Table 6 summarizes the results of our
fault injection experiment.

Table 6: Faults injected and detected by the test scenarios.
Fault Type Faults Injected/Detected

 BT EC AC All
On Interaction Protocol 16/16 23/23 21/21 60/60
 Message Ordering 6/6 10/10 8/8 24/24
 Message Timing 6/6 10/10 7/7 23/23

 Message Content 4/4 3/3 6/6 13/13

On Beliefs 4/4 1/1 2/2 7/7
 Corrupt Belief 4/4 1/1 2/2 7/7

On Internal Procedures 5/5 7/2 4/4 15/10
 Corrupt Return and
 Parameter values

2/2 6/2 2/2 8/4

 Logic Mistakes 3/3 1/0 3/3 7/6

TOTAL 24/25 31/26 27/27 83/78

Every interaction protocol faults were precisely detected by one of the developed test
scenarios. This percentage assures the quality of the test scenarios implemented. The
reason for such results can be twofold. Firstly, because the test scenarios have been de-
veloped since Jan. 2006, and since then have been continuously improved and main-
tained after each development iteration. Secondly, because the developers have been
acquiring expertise in developing agent tests (also since Jan. 2006) and, as a conse-
quence, the new test scenarios have become more effective. Some internal procedure
faults (5 faults) were not detected by the test cases; some of them (2 faults) because
they were not exercised by the interaction between agents, they were only used by the
other system’s elements - such as graphical interface components; others (2 faults) be-
cause there was no test scenario that exercised the interaction in which the operation
was exercised; and one because the injected fault generated an equivalent mutant.
Concerning the agent’s beliefs, every time a belief was corrupted it was detected by the
test scenario. This can be explained due to the possibility of using of the getBelief()

construction – based on Java Reflection - which improves the beliefs’ visibility during
tests.

8 Lessons Learned
This section provides further discussion of issues and lessons we have learned while
using JAT to test the previously described systems, and injecting agent-specific faults
to asses the test scenarios developed in these systems.
Mock Agents Library. The implementation of mock agents can be a costly task. Our first
approach relied on the creation of a library of mock agents – similar to the libraries of
mock objects which have been developed to support OO testing (e.g., mocks for Web

 25

Servers and Java.io classes) [23]. But, unfortunately, our implementation of a mock li-
brary did not succeed as, mostly, the Mock Agents were too specific to test scenarios
and could hardly be reused. After this frustrating initiative we came up with the idea
of generating mocks from a protocol specification which turned out to be a valuable
solution to reduce the cost of mock agent creation, reducing drastically the time spent
to create a test scenario.

The Synchronization crosscutting concern. The design decision of representing the syn-
chronization concern as an aspect enabled the same mock agent to be used in a non-
synchronized and in a synchronized test scenario without the necessity of changing
the mock agent’s code.

Framework Maintainability. The design decision of representing the Agent State Ma-
chine crosscutting abstraction as an XPI improved JAT’s maintainability. When the
JADE platform version evolves we do not need to update all the frameworks aspects
that intercepted it, but only the XPI which acts as a “glue” between the JADE frame-
work and the JAT framework.

MAS Tester Expertise. The effectiveness of the test activity depends upon the test devel-
opers’ ability to define error prone scenarios. Testing, like design, is a creative task
which depends on developers’ experience and expertise. Such expertise is particularly
necessary, when testing MAS, where we have different kinds of agents and several
possibilities of message-based interaction scenarios.

Complementing JAT Test Scenarios. Our preliminary results on fault injection justifies the
need of unit testing the agents’ internal procedures that are not exercised during
agents’ interaction and that are only exercised by other system elements (e.g., the sys-
tem graphical interface components). Such procedures can be tested using conven-
tional OO unit testing using JUnit for example. Since JADETestCase class is an exten-
sion of JUnit TestCase class, it recognizes and executes conventional test methods. As a
consequence the mock-agent based test scenarios and the conventional OO tests can
run jointly and continuously.

Test Case Generation. The current approach for test generation could be improved,
through the leverage of an existing test tool such as Parasoft’s JTest [28] – one of the
most used test input generation tools. JTest generates test inputs in the form of JUnit
tests. It has been extended to generate test inputs for different development para-
digms, such as the aspect-oriented paradigm [37]. We could also leverage this tool to
generate JADETestCases besides JUnit test cases.

Improving Test Coverage. Sometimes the agents’ behaviors may not be sufficiently
exercised by the test scenarios initially developed. Works such as [37] have used cov-
erage results not only to give feedback to developers on what parts of code are to be
exercised but also to give further guidance to developers on how to improve the cov-
erage. We are currently investigating the use of coverage information as a feedback to
improve effectiveness of the test scenarios defined using this framework.

9 Conclusions and Future Work

We have presented JAT, a framework for building and running tests for Multi
Agent Systems implemented in JADE platform. The test scenarios in JAT are based on
the use of Mock Agents and aspect-oriented techniques to monitor and control the exe-
cution of the asynchronous agents during tests.

JAT has been used to test three multi-agent systems from different sources. In these
experiments, JAT was used as a generic testing framework for JADE developers, same
as the JUnit framework is for Java developers. We have used JAT to build and execute

 26

unit tests, integrations tests and even system tests. We could benefit from a set of
automatic tests that could run constantly, improving the confidence in the system and
supporting the maintainability tasks. Although JAT automatic tests could not assure
the absence of faults in the tested systems, they could guarantee that whenever scenar-
ios were executed during MAS tests, they had executed as expected. Moreover, we also
used a fault injection approach to assess the quality of the test scenarios developed to
each one of theses systems. Our preliminary results have shown that JAT can effec-
tively uncover bugs related to MASs fault model.

Although JAT framework implementation is based on Java and AspectJ[18], its un-
derlying concepts (Section 3) can be applied to test any MAS system, given that the
language the system is implemented in can be extended to support aspect-oriented
concepts.

In future work, we plan to improve the generative approach: generating Mock
Agents of a higher complexity, and also the Test Scenarios; as well as leveraging exist-
ing test generation tools such as Parasoft’s JTest – which generate test inputs in the
form of a set of JUnit tests – to generate set of test inputs for JADE systems.

10 References
[1]Bellifemine, F., Poggi, A., Rimassa, G., “JADE - A FIPA2000 Compliant Agent De-
velopment Environment”, Proc. of AAMAS, 2001, pp. 216-217.

[2]Bellifimine, F., Caire, G., Poggi, A., and Rimassa, G., “JADE– A White Paper”, EXP
in Search of Innovation, 3(3), 2003, pp. 6–19.

[3]Bernon, C., Massimo, C., Pavón, J., “An Overview of Current Trends in European
AOSE Research”, Informatica (Slovenia) 29(4): 379-390 (2005).

[4]Binder, R., Testing Object-Oriented Systems. Models, Patterns, and Tools, Addison-
Wesley, 1999.

[5]Botıa, J., Hernansaez, J., and Gomez-Skarmeta A., “Towards an approach for de-
bugging MAS through the analysis of ACL messages”, Computer Systems Science and
Engineering, 20, 2005.

[6]Briand, L., Labiche, Y., Leduc, J., “Tracing Distributed Systems Executions Using
AspectJ”. Proc.of ICSM 2005.

[7]Caire, G., Cossentino, M., Negri, A., Poggi, A., Turci, P., “Multi-agent systems im-
plementation and testing”, Proc. of 4th International Symposium - From Agent Theory
to Agent Implementation, 2004.

[8]Cernuzzi, L., Cossentino, M., Zambonelli, F., “Process Models for Agent-based De-
velopment”,Journal of Engi-neering Applications of Artificial Intelligence,18(2), 2005.

[9]Coelho, R, Dantas, A., Kulesza, U.; Staa, A.v.; Cirne, W.; Lucena, C., “The Applica-
tion Monitor Aspect Pattern”, Proc. of PLoP 2006, 2006.

[10]Coelho, R. et al, “The JAT Testing Framework”, Technical Report, PUC-Rio, Brazil,
2007 (available at: www.puc-rio.br/~roberta/reports.html).

[11]Coelho, R., Alves, V., Kulesza, U., Neto, A., Garcia, A. A. v. Staa, C. Lucena, P.
Borba, “On Testing Crosscutting Features using Extension Join Points”. 3rd Workshop
on Product Line Testing (SPLiT’2006), SPLC’2006, 2006.

[12]Coelho, R., Kulesza, U., Staa, A.V., Lucena, C., “Unit Testing in Multi-agent Sys-
tems using Mock Agents and Aspects”. Proc. of Workshop of Software Engineering for
Large-Scale Multi-Agent Systems,ICSE 2006, 2006,p.83-90.

 27

[13]Filman, R., Elrad, T., Clarke, S., Aksit, M. Aspect-Oriented Software Development,
Addison-Wesley, 2005.

[14]Gamma, E. and Beck, K. JUnit: A regression testing framework.
http://www.junit.org, 2000.

[15]Garcia, A., Lucena, C., Cowan D., “Agents in Object-Oriented Software Engineer-
ing”. Software Practice & Experience, Elsevier, 34(5), 2004, p.489-521.

[16]Griswold, W.G. Shonle, M. Sullivan, K. Song, Y. Tewari, N. Cai, Y. Rajan, H.,
“Modular Software Design with Crosscutting Interfaces”, IEEE Software, Special Issue
on Aspect-Oriented Programming, 2006.

[17]Jennings, N. R. and Wooldridge, M., Agent Technology: Foundations, Applica-
tions, and Markets, Springer, 1998.

[18]Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W.,
“Getting Started with AspectJ”, Communication of the ACM, 44(10), 2001, pp. 59-65.

[19]Kiczales, G.,Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin,
J., “Aspect-Oriented Programming”, Proc. of ECOOP, 1997.

[20]Knublauch, H., “Extreme programming of multi-agent systems”. Proc. of AAMAS,
2002, pp. 704 – 711.

[21]Kulesza, U., Coelho, R., Alves, V., Garcia, A., Staa, A., Lucena, C., Borba, P., “Im-
plementing Framework Crosscutting Extensions with EJPs and AspectJ”, Proc. of ACM
SIGSoft XX Brazilian Symposium on Software Engineering, 2006.

[22]Kung, D., Bhambhani H., Nwokoro S., Okasha W., Kambalakatta R., Sankuratri P.,
“Lessons Learned from Software Engineering Multi-Agent Systems”, Proc. of
COMPSAC 2003.

[23]Mackinnon, T.,Freeman, S.,and Craig, P., “EndoTesting Unit Testing with Mock
Objects”, Proc. of XP2000, 2000. [24]Maximilien, E., Williams. L., “Assessing Test-
Driven Development at IBM”, Proc. of ICSE’2003, pp. 564-569.

[25]McConnell, Code Complete, 2nd Ed., Microsoft Press, 2004.

[26]Meyer, B., Object-oriented software construction, Prentice-Hall, Inc. Upper Saddle
River, NJ, USA, 1997.[2]

[27]Myers, G. J, The Art of Software Testing, Wiley, 2nd Ed., 2004.

[28]Parasoft: http://www.parasoft.com [29]

[29]Poutakidis, D., Padgham, L., Michael, W., “Debugging multi-agent systems using
design artifacts the case of interaction protocols”, Proc. of AAMAS 2002, pp. 960-967.

[30]Silva, V.; Choren, R.; Lucena, C., “A UML based approach for modeling and im-
plementing multi-agent systems”. In AAMAS 2004, pp.914-921.[35]

[31]Sullivan, K.,Griswold, W., Song, Y., Cai, Y.,Shonle, M., Tewari, N., Rajan, H., “In-
formation hiding interfaces for aspect-oriented design”,ESEC/SIGSOFT FSE,2005,
pp.166-175.

[32]The Expert Committee System: http://www.tec
comm.les.inf.pucrio.br/SoCAgents/CI/expertcommittee.htm

[33]Voas, J. and McGraw, G., Software Fault Injection: Inoculating Programs Against
Errors, Wiley, 1998.

[34]Voas, J., and Miller, K.. Software Testability: The New Verication. IEEE Software,
12 3:1728, 1995.

[35]Wooldridge, M., and N. Jennings, “Pitfalls of agentoriented development”. Proc. of
the 2nd AAMAS, 1998, pp. 385–391.

 28

[36]Xie, T., Marinov, D. and Notkin D., “Rostra: A framework for detecting redundant
object-oriented unit tests”, In Proc. 19th ASE, 2004, p.196–205, 2004.

[37]Xie, T., Zhao, J., “A framework and tool supports for generating test inputs of As-
pectJ programs”, Proc. of AOSD 2006, pp. 190-201.

[38] Deters, M.,Cytron, R. K. Introduction of Program Instrumentation using Aspects.
Workshop on Advanced Separation of Concerns in OO Systems, 2001.

[39] Garcia, A., Lucena, C., Taming Heterogeneous Agent Architectures with Aspects.
Communications of the ACM, 2007. (to appear)

[40] Lobato, C., Garcia, A., Lucena, C., Romanovsky, A. A Modular Implementation
Framework for Code Mobility. Proceedings of the 3rd IEE Mobility Conference 2006,
October 2006, Bangkok, Thailand.

[41]Pace, A., Trilnik, F., Campo. M., Assisting the Development of Aspect-based MAS
using the SmartWeaver Approach. Software Engineering for Large-Scale Multi-Agent
Systems. LNCS 2603, Springer-Verlag, April 2003.

